Skip to main content

Email question from a student


I received an email earlier today from a 7th grade student in Utah. Here's the (edited) question:


"How can I program my robot to make more than 1 yes-or-no decision. I have a robot that looks at 3 different sensors but I'm only using sensor logic values and not numbers. The switch block only lets me do one True or False condition."


Great question! And I certainly understand why you're confused. Rather than email the answer, I figured I'd share this with others because if one person is asking, I'm sure there are others. So, here's one option (option #2 will be provided in a separate blog post):
I don't know the details of your robot, but let's just assume that your robot's 3 sensors are Touch, Sound, and Light. You've configured the trigger values for each sensor (For example, does the Light sensor detect a light value less than 20 - true or false?) and are using the logic data plugs to take the True or False response from each sensor.
You didn't state whether all 3 sensor logic values must all be True or all be False, so this example will show you how to make decision based on a mixture of logic values, okay? Let's look at the possible options that can be returned. I'm going to write down all the possible options that could come from 3 sensors in the following format: Light - Sound - Touch with a 1 indicating True and a 0 indicating False. For example, if the Light sensor is True, the Sound sensor is False, and the Touch sensor is True, then I would write 1 - 0 - 1. Got it?
Okay, next we need to look at all the possible options?


Light - Sound - Touch

0 - 0 - 0

0 - 0 - 1

0 - 1 - 0

0 - 1 - 1

1 - 0 - 0

1 - 0 - 1

1 - 1 - 0

1 - 1 - 1


Verify that I've got them all, but I think you'll find that that's it... I've provided everything from all False to all True and everything in between. Now, count them up. There are a total of 8 possible combinations.
Using this, I need to figure out how to program a decision-making procedure that can account for 8 possible combinations. And to do that, I'm going to use the Switch block that you talked about in your question. You are correct that the Switch block only provides 2 possible options when using a Logic value - True or False. What I think will surprise you is that you can place a Switch block inside a Switch block inside a Switch block. Yes, that's 3 levels deep. By doing this, you can check the status of each sensor, one-at-a-time - based on True or False response, another Switch block will be used to check the status of the next sensor (True or False). A final level of Switch block will be added to test the last sensor.
Take a look at the image I've provided here and you'll see how this is done. Starting from the left, you'll see the first Switch block (SB-1) with True or False path. Follow it and you'll see 2 new SBs (SB-2 and SB-3), one in the True path of SB-1 and one in the False path of SB-1. Follow these and you'll see 4 new SBs, 2 in the True path of SB-2 and 2 in the False path for SB-3. And because each of these SBs have a True/False path, you will find that you have a total of 8 possible paths that can be traced.
If this is confusing you, just trace each possible path with your finger and keep count. Use the circles in the right image to represent each switch - blue lines are True and red lines are False. If you're still confused, the best solution would be to duplicate my image in NXT-G and experiment - it'll make sense if you think about it for a while. Thanks for the question - and option 2 will be posted shortly. In that option, I'm going to show you a way to use logic values to determine if all sensors are True or all sensors are False.
Jim




Light sensor

Sound sensor

Touch sensor

Popular posts from this blog

Celebrating MINDSTORMS with a Remix - Part 3

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these Fall and Winter remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Braill3 by Jerry Nicholls Braill3 is an EV3-based LEGO Braille bricks reader. This robot uses its fingertip, made from three touch switches, to read messages written using the LEGO Braille bricks and will speak out what it detected. If it sees a simple maths problem it will attempt to solve it and give the answer as well. To learn more about the process of creating this machine, read Jerry's blog . Braill3 can be viewed here . Set Review: The Braille Bricks set is well thought out. The ratios of the letters is suitable for general use and the addition of some punctuation and arithmetic operators is excellent. There is a card showing what bricks there are and their quantities, but no form of sort

Celebrating MINDSTORMS with a Remix - Part 2

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these summer and fall remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Remote controlled material handle r by Jozua van Ravenhorst (aka Mr Jo) This remix combines the LEGO Technic Material Handler (42144) with MINDSTORMS EV3 (31313) It uses the power of pneumatic cylinders to move objects around. By using a bluetooth remote control, very precise movements can be made with this model. Touch sensors in the base chassis prevent the turret twisting the cables that go through the turntable to much. The program has several protections to prevent over pressurizing the system for each of the 3 individual pumps and valves that control the 2 booms and claws. The real version of this machine is mostly used in waste material sites to bring the material to machines that sort and

Celebrating 25 Years of MINDSTORMS

In celebration of the 25th Anniversary of MINDSTORMS, we take a trip through history. Please also visit ROBOTMAK3RS Community every week as we highlight different projects all through 2023 in celebration of the anniversary. Some of the early history is based on the content shared by  Coder Shah  in our  MINDSTORMS EV3 Community Group . Some of the text and links may have been edited from his original posts for consistency and clarity.  1984 - Kjeld Kirk Kristiansen watched a TV program called "Talking Turtle," where MIT professor Seymour Papert demonstrated how children could control robot "turtles" using LOGO, a programming language he developed. 1988 - The collaboration between MIT and LEGO resulted in LEGO TC Logo in 1988, which allowed students to control LEGO models using computer commands. The video shows Papert demonstrating TC Logo. 1990 - LEGO TC Logo was hampered since the robots you built had to be tethered to a personal computer. LEGO and MIT