Skip to main content

Guest Post - Steve Hassenplug

Steve Hassenplug ( has an interesting little item to share. FLL competitors - take note:


I know this blog usually addresses the LEGO MINDSTORMS NXT, so please bear with me, while I describe a recent event involving a LEGO RCX (predecessor to the NXT).

I just got back from Robothon in Seattle. It was a very fun event. It's always great to hang out with builders who really appreciate each other's robots.

One of the competitions was the Micromouse maze event. In this event, a robot has to navigate through a maze, as fast aspossible. I have a robot that will very reliably get through a maze,if it can simply follow a wall (see Right-Hand or Left-Hand rule), however, one major challenge in a Micromouse event is that the end of the maze can not be reached by simply following the wall. I won't go into all the details about how to solve a maze, but that is an excellent topic for readers to research.

[NOTE: Steve has shared a version of the robot - not the latest, but close here.]

I planned on taking my old reliable robot (called A-Mazing) even though I know there's no possible way it can make it through the maze. Then I had a really interesting idea. Instead of just following the wall all the time, every once in a while (I picked every 30 seconds) the robot would turn 180 degrees, and start following the wall on the opposite side. You may need to draw out some mazes to see exactly what the result of this would be, but it turns out the robot goes from a zero percent chance of getting through the maze, to something greater than zero. Yes, it's much like going through a maze blindfolded, with no real pattern for getting through. But, as it turns out, with a good idea, and more luck than you can calculate, anything could happen.

And, to my surprise, it actually worked. The robot wandered throughthe maze for 30 seconds, and at EXACTLY the right time, made a random turn, which led to the middle (finish) of the maze. The robot went from start to finish in about 45 seconds. That's a far cry from the 17 seconds the winning robot took to finish, but good enough for second place.

I'm not sure I can explain how lucky that timing was. There was a window of about 2 seconds, where the robot could make that turn. Sure, if it missed, it could wander through the maze for several minutes, and maybe get to the end, or maybe not. But, in this case, it worked.

Sometimes, luck plays an important role in robotics. Usually, it's bad luck. But not always!

Popular posts from this blog


2023 is the 25th Anniversary of the MINDSTORMS brand. For 25 years, MINDSTORMS has educated and inspired a generation of robot builders, both children and adults. Unfortunately, the LEGO Group decided to end the line on December 2022. Many ROBOTMAK3RS have been passionately involved with the development of MINDSTORMS through the MUP and MCP programs. Even with the newest Robot Inventor line, several ROBOTMAK3RS were invited to submit additional bonus models that were included in the official app. Regardless of the retirement of a major LEGO robotics product line, ROBOTMAK3RS continue to MAKE-SHARE-INSPIRE using all LEGO robotics platforms available to us. Here is the official statement from LEGO. Since its launch in September 1998, LEGO MINDSTORMS has been one of the core ‘Build & Code’ experiences in the company’s portfolio, carrying with it significant brand equity and becoming a stand-out experience for the early days of consumer robotics and leading to current Build & Code

Celebrating 25 Years of MINDSTORMS

In celebration of the 25th Anniversary of MINDSTORMS, we take a trip through history. Please also visit ROBOTMAK3RS Community every week as we highlight different projects all through 2023 in celebration of the anniversary. Some of the early history is based on the content shared by  Coder Shah  in our  MINDSTORMS EV3 Community Group . Some of the text and links may have been edited from his original posts for consistency and clarity.  1984 - Kjeld Kirk Kristiansen watched a TV program called "Talking Turtle," where MIT professor Seymour Papert demonstrated how children could control robot "turtles" using LOGO, a programming language he developed. 1988 - The collaboration between MIT and LEGO resulted in LEGO TC Logo in 1988, which allowed students to control LEGO models using computer commands. The video shows Papert demonstrating TC Logo. 1990 - LEGO TC Logo was hampered since the robots you built had to be tethered to a personal computer. LEGO and MIT

Celebrating MINDSTORMS with a Remix Part 1

In honor of the 25th Anniversary of MINDSTORMS, we asked ROBOTMAK3RS to combine a LEGO set of their choice with a MINDSTORMS set. Here is what these five ROBOTMAK3RS came up with.  MINDSTORMS Chess Assistant by Arvind Seshan Overview: When you are new to chess, it can be a challenge to remember which pieces go where. Now, you can use machine learning and LEGO MINDSTORMS Robot Inventor to build a tool to help you learn where all the chess pieces go on the chess board. Sets used: LEGO® Iconic Chess Set (40174) and MINDSTORMS Robot Inventor (51515) Review: I really like how the chess set base can store all the pieces underneath and that the board neatly splits in half for handy storage. The chess pieces themselves are very sturdy and well built. My only criticism is the building of the box itself. It was quite difficult to see what pieces to use and since the entire box is made mostly of thin plates, it took a lot of time and patience. I would have liked the storage area to be sliding dra