Skip to main content

Why is my robot not perfect?

I run workshops with students all the time, and one of the first activities I do, is make them get their robot to drive forward 500mm. For the younger kids it's mainly trial and error, for the older kids I get them to calculate circumference and mathematically work it out.

But I was finding that the theory wasn't quite matching up to real life. I have in the past explained that every robot is subtly different. (this also helps to stop kids running to another computer and stealing other students values)

So I sat down and worked through the math to have a look at why my students were getting what I considered fairly different numbers for the same 500mm.

(warning, basic maths ahead)

If we take the diameter of the NXT wheels as 56mm (as written on the side) we get a circumference of:

c = pi * d
c = 3.14 * 56
c = 175.84

To go 500mm, we divide 500 by the circumference
x = 500 / 175.84
x = 2.8435 rotations
x = 1024 degrees

But I was finding that some kids needed more than this. Let look and see what happens when our wheel diameter shrinks by 1mm due to either a hot days softening the rubber or a heavy robot, both conditions which will cause the rubber tyre to sag, and hence a smaller diameter. Both conditions are entirely plausable and could infact result in more than 1mm deflection.

c = pi * d
c = 3.14 * 55
c = 172.7

x = 500 / 172.7
x = 2.8952 rotations
x = 1042 degrees

So there you go, 1mm difference in the wheels results in 18 degree difference across 500mm.
The discrepancy is even more pronounced when you are trying to rotate your robot on the spot.

Just something to keep in mind :)

Damien Kee

I may be wrong with this. Check out the comments and put in your 2 cents worth

Popular posts from this blog


2023 is the 25th Anniversary of the MINDSTORMS brand. For 25 years, MINDSTORMS has educated and inspired a generation of robot builders, both children and adults. Unfortunately, the LEGO Group decided to end the line on December 2022. Many ROBOTMAK3RS have been passionately involved with the development of MINDSTORMS through the MUP and MCP programs. Even with the newest Robot Inventor line, several ROBOTMAK3RS were invited to submit additional bonus models that were included in the official app. Regardless of the retirement of a major LEGO robotics product line, ROBOTMAK3RS continue to MAKE-SHARE-INSPIRE using all LEGO robotics platforms available to us. Here is the official statement from LEGO. Since its launch in September 1998, LEGO MINDSTORMS has been one of the core ‘Build & Code’ experiences in the company’s portfolio, carrying with it significant brand equity and becoming a stand-out experience for the early days of consumer robotics and leading to current Build & Code

Celebrating 25 Years of MINDSTORMS

In celebration of the 25th Anniversary of MINDSTORMS, we take a trip through history. Please also visit ROBOTMAK3RS Community every week as we highlight different projects all through 2023 in celebration of the anniversary. Some of the early history is based on the content shared by  Coder Shah  in our  MINDSTORMS EV3 Community Group . Some of the text and links may have been edited from his original posts for consistency and clarity.  1984 - Kjeld Kirk Kristiansen watched a TV program called "Talking Turtle," where MIT professor Seymour Papert demonstrated how children could control robot "turtles" using LOGO, a programming language he developed. 1988 - The collaboration between MIT and LEGO resulted in LEGO TC Logo in 1988, which allowed students to control LEGO models using computer commands. The video shows Papert demonstrating TC Logo. 1990 - LEGO TC Logo was hampered since the robots you built had to be tethered to a personal computer. LEGO and MIT

Celebrating MINDSTORMS with a Remix Part 1

In honor of the 25th Anniversary of MINDSTORMS, we asked ROBOTMAK3RS to combine a LEGO set of their choice with a MINDSTORMS set. Here is what these five ROBOTMAK3RS came up with.  MINDSTORMS Chess Assistant by Arvind Seshan Overview: When you are new to chess, it can be a challenge to remember which pieces go where. Now, you can use machine learning and LEGO MINDSTORMS Robot Inventor to build a tool to help you learn where all the chess pieces go on the chess board. Sets used: LEGO® Iconic Chess Set (40174) and MINDSTORMS Robot Inventor (51515) Review: I really like how the chess set base can store all the pieces underneath and that the board neatly splits in half for handy storage. The chess pieces themselves are very sturdy and well built. My only criticism is the building of the box itself. It was quite difficult to see what pieces to use and since the entire box is made mostly of thin plates, it took a lot of time and patience. I would have liked the storage area to be sliding dra