Skip to main content

Robot Inspiration Series #10: All-Terrain Autonomous Rovers

One of the first robots I tried to make without instructions, back in the RIS days, was an all-terrain autonomous rover. These robots are nice in that they don't have to be too hard to build or program, but they can have many challenges and thinking problems to overcome, and they can stimulate many creative ideas and designs. Although an all-terrain rover should technically be able to traverse any terrain, we're talking about NXT robots, so you might want to limit yourself to inside your house.

Since your robot needs to move around without you controlling it, you'll need to give it the capability to detect and respond to (or not be affected by) potentially problematic situations. Aside from the obvious one of walls and other simple obstacles, these may include:

- Steep dropoffs
- Short overhangs: sometimes a ledge or other object may block the top of your robot instead of the bottom. In this situation, a mechanism for detecting obstacles soley on the ground level would not be sufficient.
- Bumpy ground
- Steep ramps: sometimes the robot might go up a ramp that becomes so steep that the robot falls over. You'd need something that could detect this (for example, a touch sensor in the back that gets pressed if the robot tilts back too far)
- Obstacles in the back or on the sides of the robot: sometimes the robot might back up or turn into an obstacle (perhaps from avoiding an obstacle in the front). You'd need sensors to detect such objects.

One of the greatest difficulties I've found in building these robots is getting around the sensor and motor limitations. There can be so many things the robot needs to detect, but only four sensors and three motors are available per NXT Brick. You could try using multiple Bricks if you have them, or try to give each sensor multiple functions.

One way to make the robot travel is to simply make it move randomly while monitoring for problem situations and responding to them when they appear. If you wanted to go advanced, you might try to make the robot travel to a certain destination through terrain with random obstacles. Another idea would be to give the robot a task, like cleaning a floor, that it could do while moving around and avoiding obstacles.

-Jonathan

Popular posts from this blog

Celebrating MINDSTORMS with a Remix - Part 3

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these Fall and Winter remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Braill3 by Jerry Nicholls Braill3 is an EV3-based LEGO Braille bricks reader. This robot uses its fingertip, made from three touch switches, to read messages written using the LEGO Braille bricks and will speak out what it detected. If it sees a simple maths problem it will attempt to solve it and give the answer as well. To learn more about the process of creating this machine, read Jerry's blog . Braill3 can be viewed here . Set Review: The Braille Bricks set is well thought out. The ratios of the letters is suitable for general use and the addition of some punctuation and arithmetic operators is excellent. There is a card showing what bricks there are and their quantities, but no form of sort

Celebrating 25 Years of MINDSTORMS

In celebration of the 25th Anniversary of MINDSTORMS, we take a trip through history. Please also visit ROBOTMAK3RS Community every week as we highlight different projects all through 2023 in celebration of the anniversary. Some of the early history is based on the content shared by  Coder Shah  in our  MINDSTORMS EV3 Community Group . Some of the text and links may have been edited from his original posts for consistency and clarity.  1984 - Kjeld Kirk Kristiansen watched a TV program called "Talking Turtle," where MIT professor Seymour Papert demonstrated how children could control robot "turtles" using LOGO, a programming language he developed. 1988 - The collaboration between MIT and LEGO resulted in LEGO TC Logo in 1988, which allowed students to control LEGO models using computer commands. The video shows Papert demonstrating TC Logo. 1990 - LEGO TC Logo was hampered since the robots you built had to be tethered to a personal computer. LEGO and MIT

Celebrating MINDSTORMS with a Remix - Part 2

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these summer and fall remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Remote controlled material handle r by Jozua van Ravenhorst (aka Mr Jo) This remix combines the LEGO Technic Material Handler (42144) with MINDSTORMS EV3 (31313) It uses the power of pneumatic cylinders to move objects around. By using a bluetooth remote control, very precise movements can be made with this model. Touch sensors in the base chassis prevent the turret twisting the cables that go through the turntable to much. The program has several protections to prevent over pressurizing the system for each of the 3 individual pumps and valves that control the 2 booms and claws. The real version of this machine is mostly used in waste material sites to bring the material to machines that sort and