Skip to main content

Why is my robot not perfect? (part 2)

So here is the follow up to the post I made last week. Click here to refresh your memory.

There were a few different points of view with the theory so what better way to proceed than some real live tests.

Test Setup:
NXT robot, 2 wheels on a smoothish table.
2 white lines, 500mm apart
Program was written to wait 2 seconds then drive forward 1024 degrees. (the 2 seconds allowed the robot to settle and let me get my hand out of the way before it started driving)



1st test
75% power 1024 degrees, unloaded. I ran this 3 times and it was spot on in every case.

2nd test
50% power 1024 degrees, unloaded. I wanted to try and eliminate slippage with the surface of the table. If there was slippage at high power, it would be less at low power. Again all 3 runs were spot on.

3rd test
75% power 1023 degrees fully loaded. I found a nice heavy book to place over the top (2.2kg). The wheel does deform by a noticeable amount.


This time when I ran it, the robot came consistantly 30mm short. Vary the power and get the same result, 30mm short.

So if there is no slippage with the table, and changing of the wheel diameter does not affect the distance the only thing left is slippage between the wheel and the tyre.

I got some whiteout and marked both the hub and the tire and ran the experiment again. Turns out there is a small amount of slippage, although not enough to account for all the error.



Conclusion:
I think it's a combination of hub/tyre slippage and slightly deformed wheel diameter. The rubber is soft enough to compress itself slightly changing the diameter.

What do you think? Post in the comments.

--
Damien Kee

Popular posts from this blog

Celebrating MINDSTORMS with a Remix - Part 3

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these Fall and Winter remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Braill3 by Jerry Nicholls Braill3 is an EV3-based LEGO Braille bricks reader. This robot uses its fingertip, made from three touch switches, to read messages written using the LEGO Braille bricks and will speak out what it detected. If it sees a simple maths problem it will attempt to solve it and give the answer as well. To learn more about the process of creating this machine, read Jerry's blog . Braill3 can be viewed here . Set Review: The Braille Bricks set is well thought out. The ratios of the letters is suitable for general use and the addition of some punctuation and arithmetic operators is excellent. There is a card showing what bricks there are and their quantities, but no form of sort...

Celebrating MINDSTORMS with a Remix - Part 2

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these summer and fall remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Remote controlled material handle r by Jozua van Ravenhorst (aka Mr Jo) This remix combines the LEGO Technic Material Handler (42144) with MINDSTORMS EV3 (31313) It uses the power of pneumatic cylinders to move objects around. By using a bluetooth remote control, very precise movements can be made with this model. Touch sensors in the base chassis prevent the turret twisting the cables that go through the turntable to much. The program has several protections to prevent over pressurizing the system for each of the 3 individual pumps and valves that control the 2 booms and claws. The real version of this machine is mostly used in waste material sites to bring the material to machines that sort and...

Celebrating 25 Years of MINDSTORMS

In celebration of the 25th Anniversary of MINDSTORMS, we take a trip through history. Please also visit ROBOTMAK3RS Community every week as we highlight different projects all through 2023 in celebration of the anniversary. Some of the early history is based on the content shared by  Coder Shah  in our  MINDSTORMS EV3 Community Group . Some of the text and links may have been edited from his original posts for consistency and clarity.  1984 - Kjeld Kirk Kristiansen watched a TV program called "Talking Turtle," where MIT professor Seymour Papert demonstrated how children could control robot "turtles" using LOGO, a programming language he developed. 1988 - The collaboration between MIT and LEGO resulted in LEGO TC Logo in 1988, which allowed students to control LEGO models using computer commands. The video shows Papert demonstrating TC Logo. 1990 - LEGO TC Logo was hampered since the robots you built had to be tethered to a personal computer. LEGO and MIT...