Skip to main content

Quadruped Robots

Walking robots have always seemed fascinating to me. There's something amazing about a robot walking like a real person or animal. That said, I've never actually built a walking robot of my own. I tried a couple times when the RIS was around, but didn't succeed. However, recently I've been thinking about how to make a quadruped robot using the TETRIX system with the NXT to get a larger and more powerful robot that could be capable of navigating the outdoors. Right now I don't have enough TETRIX materials to build one (they're pretty expensive), but I'm hoping to get them sometime in the near future.

It's amazing how complex walking motion is! I may be wrong about this (I certainly can't prove that I'm right), but it seems to me that a quadruped needs at least 12 motorized joints to achieve full animal-like walking capabilities. Now, I know that many people have found great ways to achieve quadrupedal walking motion with much fewer motors, but I think these robots have limitations that prevent true animal-like motion. One possible setup of motorized joints in a quadruped could be eight "shoulder" joints and four "elbow" joints, as in the following figure:
The type 1 shoulder joints and elbow joints are, of course, for lifting, extending, and lowering the feet during steps. The need for the type 2 shoulder joints is a bit more subtle. Take a look at an above view of a quadruped, showing its center of gravity (COG):
The square formed by the feet represents the "support zone" of the robot. As long as the COG is within this zone, the robot should stay balanced. The closer the COG is to the center of the zone, the more stable the robot will be. Therefore, the current pose is a very stable one. Now, if we lift the front-right foot up to start taking a step, look at the position of the COG relative to the new support zone (the triangle) formed by the remaining three feet:
Now the COG is right on the edge of the support zone. This means the robot is just on the verge of tipping over, and is very unstable. In order to fix this problem, we need a way to shift the COG inside the triangular zone. One way of doing this is to use the type 2 shoulder joints to side-shift the robot away from the foot being lifted. Although there are other ways to shift the center of gravity that use less than four motors, the type 2 shoulder joints would also enable the robot to realistically turn and do other animal-like motions.

One amazing example of an animal-like quadruped is the "Big Dog" by Boston Dynamics. You can see a video of it here.

-Jonathan

Popular posts from this blog

Celebrating MINDSTORMS with a Remix - Part 3

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these Fall and Winter remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Braill3 by Jerry Nicholls Braill3 is an EV3-based LEGO Braille bricks reader. This robot uses its fingertip, made from three touch switches, to read messages written using the LEGO Braille bricks and will speak out what it detected. If it sees a simple maths problem it will attempt to solve it and give the answer as well. To learn more about the process of creating this machine, read Jerry's blog . Braill3 can be viewed here . Set Review: The Braille Bricks set is well thought out. The ratios of the letters is suitable for general use and the addition of some punctuation and arithmetic operators is excellent. There is a card showing what bricks there are and their quantities, but no form of sort

Celebrating 25 Years of MINDSTORMS

In celebration of the 25th Anniversary of MINDSTORMS, we take a trip through history. Please also visit ROBOTMAK3RS Community every week as we highlight different projects all through 2023 in celebration of the anniversary. Some of the early history is based on the content shared by  Coder Shah  in our  MINDSTORMS EV3 Community Group . Some of the text and links may have been edited from his original posts for consistency and clarity.  1984 - Kjeld Kirk Kristiansen watched a TV program called "Talking Turtle," where MIT professor Seymour Papert demonstrated how children could control robot "turtles" using LOGO, a programming language he developed. 1988 - The collaboration between MIT and LEGO resulted in LEGO TC Logo in 1988, which allowed students to control LEGO models using computer commands. The video shows Papert demonstrating TC Logo. 1990 - LEGO TC Logo was hampered since the robots you built had to be tethered to a personal computer. LEGO and MIT

Celebrating MINDSTORMS with a Remix - Part 2

The ROBOTMAK3RS continued their celebration of the 25th Anniversary of MINDSTORMS through these summer and fall remix projects. Each ROBOTMAK3R was tasked with selecting one LEGO set of their choice and combining it with a MINDSTORMS set. Below are the five amazing models they came up with. Remote controlled material handle r by Jozua van Ravenhorst (aka Mr Jo) This remix combines the LEGO Technic Material Handler (42144) with MINDSTORMS EV3 (31313) It uses the power of pneumatic cylinders to move objects around. By using a bluetooth remote control, very precise movements can be made with this model. Touch sensors in the base chassis prevent the turret twisting the cables that go through the turntable to much. The program has several protections to prevent over pressurizing the system for each of the 3 individual pumps and valves that control the 2 booms and claws. The real version of this machine is mostly used in waste material sites to bring the material to machines that sort and